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The following report is written as requested by the Center for Health
Studies (CHS). A measles outbreak has spread to an isolated island
with 50,000 inhabitants. The situation is currently being monitored
by health professionals and academics alike. I will be joining in their
efforts to help alleviate the crisis. This paper outlines a epidemio-
logical model, known as the SIR model, attributed to Kermack and
Mckendrick, which I will be using to provide estimations for monitor-
ing the situation and guiding policy response.

Measles epidemic | SIR model | ...

The population of the island has been divided into three

sub-population groups: currently healthy individuals who

are susceptible to the disease (S), infected individuals (I)

who are capable of transmitting the disease to others, and

recovered individuals who are subsequently immune to further

complications or relapses (R).

Model

1. Equations

Members of the population move through the sub-population

groups according to the following flowchart:

flowchart.jpg

Fig. 1. The flowchart above captures the entire island population, ignoring births,
mortality, and immigration & emigration

The arrows in Figure 1 indicate that the three sub-populations

are constantly changing, expanding or declining as the epi-

demic prolongs. The number of people in each group can be

described numerically by three functions: S,I, and R. All these

are functions of the time, t, and they change according to a

system of di�erential equations:

SÕ
= ≠–SI [1]

Equation 1 describes the rate at which the susceptible popula-

tion becomes infected as a result of contact with the infected

for some positive constant, –, also known as the transmis-

sion rate. The susceptible population is declining while the

epidemic lasts, and thus the rate of change is negative.

RÕ
= —I [2]

Equation 2 describes the rate at which the recovered popula-

tion increases as infected individuals recover for some positive

constant, —, also called the recovery rate.

I Õ
= –SI ≠ —I [3]

Finally, equation 3 describes the rate at which the infected

population changes as the susceptible become infected and the

currently infected individual recover.

Analysis

2. Parameters, Estimations

According to reports from the front-line, as of Wednesday, Jan

29, there are 45,400 susceptible individuals, 2,100 infected indi-

viduals, and 2500 recovered individuals. Dr.Lois has estimated

that measles last about 14 days (— =
1

14 )and the transmission

rate is 0.00001. Using the computational capabilities of Maple,

Iestimate the population in each sub-population group on the

two specific dates as requested by the doctor. The results are

tabulated below:

Table 1. Euler estimation results

Sub-population groups:

Susceptible Infected Recovered

(S) (I) (R)

Sunday, Jan 26 47,120.83635 644.9191 2,234.2447
Saturday, Feb 8 13,062.2806 25,546.8698 11,390.8496

*The total population S+I+R always equals to 50,000; it is

constant since
dS
dt +

dI
dt +

dR
dt = ≠–SI + (–SI ≠ —I) + —I = 0

*The values in the table are obtained using a step size of 0.01;

more accurate estimations could be obtained by decreasing

the step-size, but I believe that, in the context of this

analysis, a step size of 0.01 is su�cient

3. Predictions and Graphical Analysis

1. Using the Euler method(a step-size of 0.01), I estimate that

the epidemic will die out in ¥ 170 days. I quality the phrase

"die out" by assuming that I=0. In other words, I find the

value of t such that I¥0. The Euler estimation outputs are

tabulated below:

Table 2. Euler estimation results for populations when the epidemic
dies out

Sub-population groups:

Susceptible Infected Recovered

(S) (I) (R)

Tuesday, July 14 58.9061 0.4952 49,940.5987
*The values in the table are obtained using a step size of 0.01;

more accurate estimations could be obtained by decreasing

the step-size, but I believe that, in the context of this

analysis, a step size of 0.01 is su�cient
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Fig. 2. is zoomed in to better capture the behavior of the curve around t=170, which
is approximately when the epidemic dies out

As can be seen from Figure 2, the graphical analysis con-

firms our prediction that the epidemic will die out in ¥ 170

days. The number of infected is ¥ 0.4952, which is e�ectively

zero.

2. Using the model, I are also able to predict whether there

would be an outbreak on the island. Our work are as follows:

Given the rate of change of the infected population 3,

I Õ
= –SI ≠ —I

= I–(S ≠ —
–

)

Factor out I and –. Notice that, because – and I are both

positive, the sign of I’ is dependent on the term (S ≠ —
– ),

therefore:

If S >
—
–

, then I’ œ R>0

If S <
—
–

, then I’ œ R<0

I conclude that I’, the rate of change of the infected population,

must equal to zero when S=
—
– ; this concept is known as the

disease threshold, where, unless the population of susceptible

is larger than the ratio of the two parameters, – and —, the

number of infected will decrease. Given the parameters of our

model, I find:

—
–

=

1
14

0.00001
¥ 7, 142.8571

As of Wednesday, Jan 29, the population of susceptible individ-

uals is 45,400, which clears the threshold by the thousands. I

conclude that the island will be subject to an measles epidemic.

2. In addition, I am able to predict the infected population at

the peak of the epidemic. Our work are as follows:

I’, the rate of change of the infected population, involves two

unknown functions, S and I. I use the definition of the chain

rule to manipulate the di�erential equations so that I may have

a single di�erential equation that involves a single unknown

function. I entertain I as a function of S, and its rate of change

is given by the following di�erential equation:

I Õ
=

dI
dS

According to the chain rule:

dI
dS

=
dI
dt

ú dt
dS

=

dI
dt
dS
dt

=
–SI ≠ —I

≠–SI

Factor out I and simplify:

=
I(–S ≠ —)

I(≠–S)

=
–S ≠ —
≠–S

I now have the following equation for I’, involving one unknown

function, S:

dI
dS

=
–S ≠ —
≠–S

Taking the indefinite integral:

I =
—
–

ln | S | ≠S + C, where C is a constant of integration

Detailed steps for the integration process is included in the

Appendix 4.Using the initial conditions and the parameters

to solve for C:

C = I(0) ≠ —
–

ln | S(0) | ≠S(0)

= 2, 100 ≠
1

14
0.00001

ln | 45, 400 | ≠45, 400

¥ ≠290, 094.7670

I have the following function, I:

I =
—
–

ln | S | ≠S ≠ 290, 094.7670

At the peak of the epidemic, the infected population has

reached its maximum value, where no increase is possible and

the population has not yet begin to decline. As this juncture,

I’ must be equal to zero. I know from our earlier work:

When I’ = 0, it must be true that S =
—
–

,

That is, S equals the disease threshold when I’ is zero. We

found the disease threshold to be ¥7,142.8571; plugging in the

disease threshold for S in the function I:

I =
—
–

ln | 7, 142.8571 | ≠(7, 142.8571) + 290, 094.7670

¥ 27, 147.1482
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So, we predict that about 27,147.1482 individuals would be

infected at the peak of the epidemic. Knowing these values

for S and I and using maple’s looping capabilities, we find

that the epidemic peaks in about 12.26 days starting from

Wednesday, January 29. The Euler estimation outputs are

tabulated below:

Table 3. Euler estimation results for peak populations

Sub-population groups:

Susceptible Infected Recovered

(S) (I) (R)

Monday, February 10 7,148.7315 27,160.4877 15,690.7807
*The values in the table are obtained using a step size of 0.01;

more accurate estimations could be obtained by decreasing

the step-size, but we believe that, in the context of this

analysis, a step size of 0.01 is su�cient

Fig. 3. depicts the behaviors of I, S, and R, around t=12.26, which is approximately
when the epidemic peaks

As can be seen from Figure 3, the graphical analysis con-

firms our prediction that the epidemic will peak in ¥ 12.26

days. Peak infected population is ¥ 27,160.4877, which is

close to the exact value I solved for analytically.

4. Inference

What does the model communicate? Given the urgency of the

situation, it is pivotal for policy makers act quickly. Recent

reports from the front-line have indicated that a quarantine

has been put into e�ect. According to Dr.Lois’ estimation,

a quarantine e�ectively reduces the transmission rate, –, by

half. I find the new transmission rate to be an improved but

nevertheless insu�cient e�ort in combating the outbreak:

S =
—

New–

=

1
14

0.00001
2

¥ 14, 285.7143

The current population of susceptible, 45,400 people, is still

too large for an infected population to never grow, fostering

into an epidemic. Furthermore, a graphical analysis reveals

that the time at which the epidemic would die out is delayed

under the quarantine:

Fig. 4. is zoomed in to better capture the behavior of the curve around t=202.23,
which is approximately when the epidemic dies out under the quarantine

As can be seen in figure 4, under the quarantine, the infected

population is predicted to become e�ectively zero in ¥ 202.23

days, which is a delay compared to that of without it, ¥
170 days. The Euler estimation outputs for the populations

when the epidemic dies out under the quarantine are tabulated

below:

Table 4. Euler estimation results for populations when epidemic dies
out (Under Quarantine)

Sub-population groups:

Susceptible Infected Recovered

(S) (I) (R)

Saturday, August 15 1,858.4766 0.4999 48,141.0240
*The values in the table are obtained using a step size of 0.01;

more accurate estimations could be obtained by decreasing

the step-size, but I believe that, in the context of this

analysis, a step size of 0.01 is su�cient

From Table 4, I see that the susceptible population under

the quarantine is 1,858.4766 when the epidemic dies out; this
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value is larger than the susceptible population without the

quarantine, in Table 2, 58.9061. Our interpretation is that,

despite that fact that it takes longer for the epidemic to

die out under the quarantine, the implementation of it is

associated with a larger susceptible population,i.e. those who

never get sick, at the end of the epidemic. In other words,

fewer people would become infected under the quarantine.

Nevertheless, using the concept of the threshold, I conclude

that the transmission rate ought to be reduced further:

current susceptible population >
—
–

The infected population grows. I would like to find a trans-

mission rate, –, such that:

current susceptible population =
—

New–

New– =
—

current susceptible population

New– =

1
14

45, 400

¥ 1.5733E≠6

Compared this value to the original transmission rate, 0.00001:

original–
New–

=
0.00001

1.5733E≠6

= 6.356

I interpret this number as the factor by which the transmission

rate must be reduced, i.e, in order to alleviate the measles

epidemic on the island, the transmission rate must be reduced

to 1/7 of what it was without the quarantine. Given the

urgency of the situation, a stricter quarantine and, perhaps,

other public health programs are strongly advisable. While

vaccines, which reduce the population of susceptible, are a

viable option, it may be that we are too far into the epidemic

for vaccines to lead to any remarkable turnaround. Lastly,

with antibiotics, which increases the recovery rate, —, in our

model, still months away, it may be advisable to scale up

production of medical supplies to support intermediate or

temporary treatments. In times of health epidemic, any given

economy must allocate its resources toward preventing a social

breakdown.
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Appendix

We have the following equation for I’:

dI

dS
= –S ≠ —

≠–S

Technically, the variables have already been separated, so

we simply write out the implicit 1 on the left side of the

equation:

(1) dI

dS
= –S ≠ —

≠–S

Take the integral with respect to S:

⁄
(1) dI

dS
dS =

⁄
–S ≠ —

≠–S
dS

⁄
(1)dI =

⁄
–S ≠ —

≠–S
dS

Now we focus on the left side of the equation, integrate

with respect to I:

⁄
(1)dI = I + C1, where C1 is a constant of integration

On the right side of the equation we have:

⁄
–S ≠ —

≠–S
dS

Apply the constant multiple rule

1
≠–

⁄
–S ≠ —

S
dS

Apply the fraction rule and simplify:

1
≠–

⁄
–S

S
≠

—

S
dS

1
≠–

⁄
– ≠

—

S
dS

Apply the di�erences rule:

1
≠–

⁄
–dS ≠

⁄
—

S
dS

Integrate with respect to S:

( 1
≠–

)[(–S + C1) ≠ (— ln |S| + C2)]

( 1
≠–

)(–S + C1 ≠ — ln |S| ≠ C2)

Combine the constant terms C1 and C2:

( 1
≠–

)(–S ≠ — ln |S| + C), where C is a constant of integration

Distribute and Simplify

–S

≠–
+ — ln |S|

–
+ 1

≠–
C, where C is a constant of integration

–S

≠–
+ — ln |S|

–
+ C2, where 1

≠–
C = C2 as a constant of integration

≠ S + — ln |S|
–

+ C2, where C2 is a constant of integration

Set the left side of the equation equal to the right:

I + C1 = ≠S + — ln |S|
–

+ C2

Combine the constant terms C1 and C2 and re-arrange:

I = — ln |S|
–

≠ S + C, where C = C1 + C2 as a constant of integration
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