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1 Introduction

This report summarizes all of the modeling and analysis results associated with the study of the statis-

tical association between prostate-specific antigen levels (PSA) and various prognostic clinical measurements

in men with advanced prostate cancer— cancer volume, prostate weight, age, benign prostatic hyperplasia,

seminal vesicle invasion, capsular penetration, and Gleason score. The purpose of this report is to document

the best linear regression model obtainable from these clinical measurements and all corresponding inferences

during the subsequent statistical analyses. We understand that a useful model is conducive to the success

of your research team, and we are confident that the following results and recommendations address your

need.

The remainder of this report is organized as follows. Section 2 describes the data in detail, including

variable definition, descriptive statistics, and graphical exploration of the variables. Section 3 presents the

models in their equation forms, details the specifics of their development, and assesses the model assumptions.

Section 4 report the findings of the regression models and the robustness of these findings. Next, Section

5 tackles inferences concerning the regression parameters and constructs interval estimates for these model

parameters. Lastly, Section 6 leverages the results of our analyses and concludes with our recommendations

on the “best” model for your research team.

2 Data Preparation

The sample of data is provided by our client, the University Medical Center Urology Group. In this

observational study, prostate-specific antigen levels (PSA) are recorded for a sample of 97 male patients with

advanced prostate cancer. Also recorded are a myriad of other patient measurements. Table 1 provides the

definitions of the variables and their units of measurement.

Table 1: Variable Definitions

Variable Variable Code Variable Definition

PSA level PSA Serum Prostate-specific antigen level (mg/ml)

Cancer volume volume Estimate of prostate cancer volume (cc)

Weight weight Prostate Weight (gm)

Age age Age of patient (years)

Benign prostatic hyperplasia hyperplasia Amount of benign prostatic hyperplasia (cm2)

Seminal vesicle invasion invasion Presence or absence of seminal vesicle invasion: 1 if yes, 0 otherwise

Capsular penetration capsular Degree of capsular penetration (cm)

Gleason score gleason
Pathologically determined grade of disease (summed scores were

either 6, 7, or 8 with higher scores indicating worse prognosis)
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2.1 Descriptive Statistics

Table 2: Summary Statistics

Variable Max Mean Median Min Pctl(25) Pctl(75) St.Dev.

PSA 265.072 23.730 13.330 0.651 5.641 21.328 40.783

volume 45.604 6.999 4.263 0.259 1.665 8.415 7.881

weight 450.339 45.491 37.338 10.697 29.371 48.424 45.705

age 79 63.866 65 41 60 68 7.445

hyperplasia 10 2.535 1.3 0 0 4.8 3.031

invasion 1 0.216 0 0 0 0 0.414

capsular 18 2.245 0.4 0 0 3.3 3.783

gleason 8 6.876 7 6 6 7 0.740

In Table 2, the max and min columns provide us with a range of validity for our regression analysis. It

can be inferred from the mean and median columns that some of the continuous variables— PSA, Volume,

weight, hyperplasia, capsular— are positively skewed, which is a common phenomenon in data that arise in

a healthcare setting. Before we turn to graphical explorations, we provide preliminary univariate analysis

about each of the variables with regards to outliers, particularly those that are highly skewed.

2.2 Univariate Analysis

A procedure for detecting outliers is carried out for each of the continuous variables listed in Table 2.

The results are tabulated below. We note that values above (Q3 + 1.5 · IQR) or below (Q1− 1.5 · IQR) are

considered as outliers; values above (Q3+3 · IQR) or below (Q1−3 · IQR) are considered as extreme outliers.

Also note that extreme outliers is a subset of the set of outliers.

Table 3: Outlying Values for Continuous Predictors

Variable Outlier Outlier ID Extreme Outlier Outlier ID Total Outliers

PSA 9 89, 90, 91, 92, 93, 94, 95, 96, 97 5 93, 94, 95, 96, 97 9

volume 7 75, 76, 55, 91, 86, 97, 94 2 97, 94 7

weight 7 78, 69, 77, 61, 89, 70, 32 3 89, 70, 32 7

age 5 19, 49, 94, 57 0 No case 5

hyperplasia 0 No case 0 No case 0

capsular 10 64, 94, 82, 86, 76, 95, 89, 79, 47, 97 3 79, 47, 97 10

3



As can be seen from Table 3, the response variable and few of the predictor variables have values that

are far outlying. While it is useful to understand these characteristics of the sample, the multiple regression

models that will be developed in this report make no assumptions about the distributions of these variables.

The models do, however, assume that the errors are independent normal random variables with constant

variance, which we will assess by analyzing the diagnostic plots. With this being said, we now proceed to

graphical exploration of the variables.

2.3 Graphical Exploration

Figure 1: Scatter Plot and Correlation Matrix

Figure 1 presents the scatter plot matrix and the correlation matrix of all the variables in the data

set. The diagonal entries of Figure 1 contain the density plots of the variables. As can be seen, PSA,

volume, weight, hyperplasia, and capsular are indeed right-skewed. As expected, gleason and invasion are

multimodal in their distributions, as both are discrete. The age variable is less skewed, but the Anderson-

Darling test (p = 0.0003773) and the Lilliefors test (p = 0.003615) both reject the null hypothesis that age
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is normally distributed in this sample (it need not be for the linear regression model to be a sound modeling

technique). Overall, our graphical analyses confirm our conclusions about the skewness of the distributions

of the variables from Table 2 and Table 3.

The entries above and below the diagonal of Figure 1 display a multitude of scatter plots and coefficients

of simple correlation. The features of interest to our analysis are the last row and last column of the matrix,

which show the scatter plots of the response variable against each of the predictor variables and their

respective correlations. From the scatter plots, PSA appears to vary positively with volume, capsular,

gleason, and invasion. The strengths of the bivariate relationships are mixed, with volume, capsular, and

gleason appearing to be correlated with the response variable, PSA. Hyperplasia is negatively correlated

with PSA, however, the strength of this bivariate relationship is weak. Some other noteworthy features are

that, among all the predictor variables, 1) hyperplasia tends to be correlated with weights (r = 0.322) and

age (r = 0.366), 2) invasion is highly correlated with capsular (r = 0.680) and gleason (r = 0.429), and 3)

capsular is correlated with Gleason scores (r = 0.462). Thus, it behooves us to investigate the presence of

interaction effects and multicollinearity when we fit the linear regression models.

2.4 Second Order and Interaction Terms

To investigate the functional forms in which the predictor variables should enter the regression model,

we fit the second order models for each of the continuous predictor variables:

ln(PSA)i = β0 + β1Xi + β11X
2
i + εi

where

• Xi are the orthogonal polynomials of the X predictor1

Then, we conduct the partial F-test to check if the first-order model is adequate. To avoid the risk of

over-fitting, we use α = 0.01; that is, we only include the higher order term if the evidence against the null

hypothesis is strong. Based on these results,2 we determine that the squared terms of the weight and volume

variables should be included in the model but capsular, hyperplasia, and age should remain linear in their

specifications. Thus, we also include the following predictors in the full data set.3

• Weight (Orthogonal Polynomials)2

• Volume (Orthogonal Polynomials)2

1Orthogonal polynomials are employed to mitigate the effects of serious multicollinearity even after centering the variables,

which is identified by the Variance Inflation Factor (VIF) procedure.
2We use a hierarchical approach; that is, we fit the second-order model for each variable and test if the the first-order model

is adequate. These results are included in the R script and can be provided upon request.
3We note that these orthogonal polynomials (orthogonal) are simply linear combinations of the original linear and squared

variables (raw). The two quadratic models (orthogonal and raw) have the same fitted values and only differ in terms of

parameterizations.
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Next, on the basis of our graphical exploration (that is, this is not based on a priori knowledge), potential

interaction effects will need to be investigated. Our approach for detecting interaction effect involves the

residual plots and partial F tests. Once we obtain the candidate additive models, we will check for any model

that contains both components of any of the cross-product terms listed below.

Volume × Invasion Volume × Capsular Volume × Gleason

Age × Hyperplasia Weight × Hyperplasia Capsular × Invasion

Gleason × Invasion Capsular × Gleason

Our decision on whether to include an interaction term will the be informed by analyzing the plot(s) of

model residuals against these cross-product terms as well as the partial F tests.

2.5 Transformation

Lastly, a Box-Cox procedure suggests λ = 0, which is by definition the natural logarithmic transforma-

tion of the response variable, PSA. Thus, in the remaining sections, we will use the log-transformed PSA as

the response variable. Figure 2 below shows the density plots before and after the transformation. As can

be seen, the distribution of the natural log of PSA is now fairly symmetric.

Figure 2: Transformation of the Response Variable, PSA

Before proceeding to develop the candidate “best” models, we note that the full data set now contains 18

variables (1 response, 9 potential predictor variables for the additive model, and 8 cross-product terms).
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3 Models

3.1 Best Subset

Proceeding with our set of 9 potential predictor variables for the additive model, we employ a few

methods for model development. The first is the Best Subset method, which suggests the following model:

ln(PSA)i = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β5Xi5 + β55X
2
i5 + β6Xi6 + β66X

2
i6 (1)

where

• β0, β1, β2, β3, β4, β5, β55, β6 and β66 are the parameters

• ln(PSA)i is the natural logarithm of prostate-specific antigen level

• Xi1 is patient age (years)

• Xi2 is the amount of benign prostatic hyperplasia (cm2)

• Xi3 equals 1 if seminal vesicle invasion is present, 0 otherwise

• Xi4 is the Gleason scores

• Xi5 and X2
i5 are the linear and squared terms of cancer volume that are orthogonal to the constant

polynomial of degree 0 as well as to each other

• Xi6 and X2
i6 are the linear and squared terms of prostate weight that are orthogonal to the constant

polynomial of degree 0 as well as to each other

We develop the above model using the Cp criterion. In using this criterion, we seek to identify subsets

of predictors for which 1) the Cp value is small and 2) the Cp value is near 9, the number of predictors.

Model 1 is selected based on these three facts:

1. Among 32 candidate models, model 1 has the highest adjusted coefficient of multiple determination

R2
adj = 0.588.

2. Among 32 candidate models, model 1 has the fifth smallest Cp = 9.21

3. Among 32 candidate models, model 1 falls closet to the line Cp = 9

For model 1, we begin our model refinement by including an interaction term between volume and weight.

Then, using α = 0.01, we conduct the partial F-test and conclude that the cross-product term should

be dropped from the model. Next, we plot the residuals against the cross-products involving age, volume,

hyperplasia, weight, gleason, and invasion. The residuals do not vary systematically with these cross-product

terms. We further confirm this by conducting the partial F tests to see if the additive model is adequate.

For all cross-product terms, we fail to reject the null hypothesis at the 1% significance level, concluding that

there is no interaction effect present.
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3.2 Backward Elimination & Forward Selection

The second model we will investigate is developed by stepwise procedures such as the forward selection

method and the backward elimination method. The forward selection method involves adding candidate

variables to the null model with just the intercept that leads to the best Mallow’s Cp improvement. Con-

versely, the backward elimination method removes variables from the full model with all 9 predictors using

Mallow’s Cp as the criterion for comparing models. For our purposes, both procedures suggest the same

model:

ln(PSA)i = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + β44X
2
i4 + β5Xi5 + β55X

2
i5 (2)

where

• β0, β1, β2, β3, β4, β44, β5 and β55 are the parameters

• ln(PSA)i is the natural logarithm of serum prostate-specific antigen level

• Xi1 is the amount of benign prostatic hyperplasia (cm2)

• Xi2 equals 1 if seminal vesicle invasion is present, 0 otherwise

• Xi3 is the Gleason scores

• Xi4 and X2
i4 are the linear and squared terms of cancer volume

• Xi5 and X2
i5 are the linear and squared terms of prostate weight

Model 2 differs from model 1 in that the age variable is dropped. Using similar procedures, we conclude

that there is no interaction effect present among the variables included in this model.

3.3 Model Comparison

Table 4 summarizes the selection criteria for model 1 and model 2.

Table 4: Model Selection Criteria

p R2 R2
adj SSEp Mallow Cp AICp SBCp BICp

Model 1 9 0.6219 0.5876 48.3044 9.2120 -49.6273 -26.4549 253.3939

Model 2 8 0.6158 0.5855 49.0950 8.6559 -50.0525 -29.4548 250.394

In using these selection criteria, we wish to minimize SSEp, Mallow’s Cp, AICp, SBCp, and BICp, and

most of these criteria favor model 2. Compared to model 2, the strengths of model 1 lie in its slightly higher

R2
adj value and slightly lower SSEp. In addition, Mallow’s Cp for model 1 is closer to 9 than Mallow’s Cp

is to 8 for model 2, indicating that bias may be smaller for model 1 than for model 2. However, we argue

that these differences may not be worth including an additional parameter in the model. To provide further

statistical justification for our choice of “best” model, we test the null hypothesis that model 2 is adequate

against the alternative hypothesis that the age variable should be included. Based the the partial F test

(p = 0.2333), we fail to reject the null hypothesis at all significance levels, concluding that the contribution
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of the age variable is not above and beyond those of the predictors already in model 2. Based on these

comparisons and more, we conclude that the more parsimonious model 2 may be desired. With these “best”

models, we now turn to model diagnostics.

3.4 Graphical Assessment of Model Assumptions

To examine the aptness of model 1, we present the following panel of plots.

Figure 3: Diagnostic Plots for Model 1

The first panel in Figure 3 plots the residuals against the fitted values. As can be seen, the residuals

appear to vary randomly with the fitted values. The regression function is appropriate and there is no

concern for non-constancy of error variance. The second panel of Figure 3 shows the normal quantile plot,

which indicates that the residuals are reasonably normal. The last two panels provide graphical analysis

on two additional measures of model aptness, Cook’s distance and leverage. Cook’s distance considers the

influence of the ith case on all 97 fitted values. Crudely speaking, the leverage value of the ith case measures

how distant it is from the center of all predictor observations, called the centroid. We care about these

measures since they communicate to us whether there are potentially influential points that may heavily

influence our model results. Evidently, the Cook’s distance plot in Figure 3 flags three such cases, one of
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which (case 32) is rather extreme. Therefore, it behooves us to explore the influence these values have on

our estimated regression coefficients, which we will tackle in the results section. The residual plot against

the leverage values shows no cases that are outlying with respect to their response values since there are

no standardized residuals with absolute value of three or more. Again, the three cases 32, 47, and 69 are

identified as outlying with respect to their predictor values.

Figure 4: Diagnostic Plots for Model 2

Figure 4 presents the diagnostic plots for model 2. Again, the first two panels show that there is no

concern for heteroscedasticity and there is no substantial departure from normality. The regression function

appears to be appropriate as the residuals do not vary systematically with the fitted values. Similar to Model

1, there is evidence that the same three cases may be unduly influencing our model and there is no presence

of outliers with respect to the response variable.

3.5 Assessment of Model Assumptions Using Formal Tests

Table 5 summarizes the formal test results for model 1. As can be seen, the normality of the error

terms is supported by the formal tests. For constancy of error term variance, the Breusch-Pagan test and
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the Brown-Forsythe test conclude that the assumptions of the normal error model is satisfied.

Table 5: Tests For Model 1

Test Hypotheses α Test Statis-

tic

Criteria Conclusion

Correlation

Test

H0 : Normality

Ha : Non-normality

0.1 Pearson’s r =

0.9922

critical-value =

0.989

Conclude H0

Anderson-

Darling

H0 : Normality

Ha : Non-normality

0.1 A = 0.3806 p-value = 0.3958 Conclude H0

Lilliefors H0 : Normality

Ha : Non-normality

0.1 D = 0.0675 p-value = 0.3407 Conclude H0

Breusch-

Pagan

H0 : Constant Error Variance

Ha : Non-constant Error Variance

0.1 BP = 4.9187 p-value = 0.7662 Conclude H0

Brown-

Forsythe

H0 : Constant Error Variance

Ha : Non-constant Error Variance

0.1 BF = 0.0002 p-value = 0.9901 Conclude H0

We choose α = 0.1 to be more conservative and not hasten to conclude H0 in support of the model assumptions.

For the Brown-Forsythe test, we choose Volume ≥ −0.035 (the median) as the threshold for grouping.

Table 6 summarizes the formal test results for model 2. Similar to model 1, the assumptions are well

satisfied.

Table 6: Tests For Model 2

Test Hypotheses α Test Statis-

tic

Criteria Conclusion

Correlation

Test

H0 : Normality

Ha : Non-normality

0.1 Pearson’s r =

0.9919

critical-value =

0.989

Conclude H0

Anderson-

Darling

H0 : Normality

Ha : Non-normality

0.1 A = 0.3576 p-value = 0.4477 Conclude H0

Lilliefors H0 : Normality

Ha : Non-normality

0.1 D = 0.0497 p-value = 0.8045 Conclude H0

Breusch-

Pagan

H0 : Constant Error Variance

Ha : Non-constant Error Variance

0.1 BP = 5.8639 p-value = 0.5557 Conclude H0

Brown-

Forsythe

H0 : Constant Error Variance

Ha : Non-constant Error Variance

0.1 BF = 0.0342 p-value = 0.8536 Conclude H0

For the Brown-Forsythe test, we choose Volume ≥ −0.035 (the median) as the threshold for grouping.
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4 Results

4.1 Regression Output

Table 7 displays our full regression output. For both models, we find evidence that, ceteris paribus,

cancer volume is positively associated with the response variable, log PSA. Because of our orthogonal trans-

formations, both the linear and the second order terms for the volume variable lose their usual interpretability.

However, we may still infer from the signs of the estimated coefficients that cancer volume is positively and

significantly associated with PSA levels and at a diminishing rate, as indicated by the negative quadratic

effect coefficient on the second order term.

Since model 2 is our preferred model, we look to point out the other notably significant variables—

invasion, gleason, and weight squared. From Table 1, we see that the invasion variable is a qualitative

predictor; it captures the differential effect of the presence or absence of seminal vesicle invasion. That

is, the estimated coefficient indicates how much higher the response function is in the presence of seminal

vesicle invasion than the the response function in its absence. Because of the log transformation on the

response variable, an interpretation of this coefficient is not straigtforward. Using the formula from Halvorsen

and Raymond Palmquist (1980),4 we provide the following interpretation of the estimated coefficient on

invasion— the percent change in PSA levels associated with the presence (that is, switching the dummy

variable from 0 to 1) of seminal vesicle invasion is 83.86% for model 1 and 81.27% for model 2.

For Gleason scores, we note again that this is a qualitative predictor variable and the classes employed

are elements of the set {6, 7, 8}. It is important to understand that the allocation of code implies that the

mean response changes by the same amount when going from one score to another. This nature of the effect

of Gleason scores on the response is the result of code allocation, which assigns equal distances between the

three classes of scores. That is, all else equal:

E{ln(PSA)|A Gleason score of 8} − E{ln(PSA)|A Gleason score of 7} = β3

E{ln(PSA)|A Gleason score of 7} − E{ln(PSA)|A Gleason score of 6} = β3

In Table 7, an unbiased estimator for β3 is 0.302 for model 1 and 0.281 for model 2, both of which are

statistically significant at the 5% significance level.

Another important finding from Table 7 is that the quadratic effect coefficient for the prostate weight

variable is statistically significant while the linear effect coefficient is statistically not different from zero.

This finding is consistent across both models. We include the linear term since it is viewed as providing

basic information about the shape of the response function while the quadratic term is viewed as providing

refinements in the specification of the shape of the response function. Again, due to the orthogonal trans-

formation, the estimated coefficient cannot be interpreted directly. However, we again emphasize that the

negative quadratic effect coefficient indicates some important feature of the response function and thus the

4https://fvela.files.wordpress.com/2010/11/dummyinterpretation.pdf
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Table 7: Regression Output

Response variable:

ln(PSA)

(Model 2) (Model 1)

hyperplasia 0.047 0.055∗

(0.032) (0.033)

invasion 0.595∗∗ 0.609∗∗

(0.234) (0.234)

gleason 0.281∗∗ 0.302∗∗

(0.123) (0.124)

weight 0.974 1.081

(0.805) (0.808)

weight squared −1.641∗ −1.807∗

(0.917) (0.925)

volume 4.879∗∗∗ 4.811∗∗∗

(1.002) (1.001)

volume squared −1.421∗ −1.727∗∗

(0.775) (0.814)

age −0.014

(0.012)

Constant 0.296 1.057

(0.842) (1.052)

Observations 97 97

R2 0.616 0.622

Adjusted R2 0.586 0.588

Residual Std. Error 0.743 (df = 89) 0.741 (df = 88)

F Statistic 20.374∗∗∗ (df = 7; 89) 18.096∗∗∗ (df = 8; 88)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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nature of the relationship between prostate weight and log PSA levels.

Lastly, although age is statistically not different from zero in model 1, its inclusion results in the

hyperplasia variable becoming significant at the 10% significance level. It is mildly surprising that the

selection methods identify the hyperplasia variable as a predictor for model 2 despite the apparent lack

of evidence of its usefulness. Nevertheless, an interpretation for the estimated regression coefficient on

hyperplasia in model 1 is as follows— a one unit change in the amount of hyperplasia, approximately

speaking, is associated with a 5.5% change in PSA levels. In model 2, the effect size is smaller for the

hyperplasia variable and the coefficient is statistically insignificant.

4.2 Sensitivity Analysis

The plots in figure 3 and 4 reveal three outlying cases with respect to their predictor values (henceforth,

cases 32, 47, and 69). To the extent that these cases represent legitimate data, we may wish to investigate

further the manner in which they influence our regression results.5 We begin our analysis by assessing

whether there are other high leverage cases. Our identification strategy involves the diagonal entries of the

hat matrix, hii, which is a measure of the distance between the predictor values of the ith case and the means

of the predictor values for all 97 cases. If the ith case is outlying with respect to its predictor observations

and has a large leverage value, it exerts leverage in determining the fitted value Ŷi. Specifically, we consider

a leverage value large if it is more than twice as large as the mean leverage value:

2h̄ = 2[

∑97
i hii
97

] = 2[
8

97
]

Table 8 tabulates the identified outlying cases, including their leverage value and case index. Also included

in Table 8 are two additional measures— Cook’s distance and DFFITS. The DFFITS measures the distance

between the fitted Ŷi for the ith case when all 97 cases are used and the predicted Ŷi(i) for the ith case

when the ith case is omitted from the sample. Together, Cook’s distance and DFFITS allow us to ascertain

whether an outlying case is influential. For each Cook’s distance, we relate it to the F (8; 89) distribution

and obtain a percentile; we consider an outlying case influential if its percentile value is near 50 percent or

more. In addition, a DFFITS value exceeding one in absolute values is also considered influential.

As can be seen in Table 8, there are six cases whose leverage values are considered large relative to the

mean leverage value. Notably, case 32 and 69 from Figure 3 and 4 are listed as outlying with respect to

their predictor values. Case 47 is missing from the list since its leverage value, 0.0852, is less than twice the

mean leverage value. It’s Cook’s distance, however, is large enough to warrant a flag in the diagnostic plots;

this is due to the fact that case 47 has a relatively large residual value, -1.7313, which is factored into the

calculation of Cook’s distance. What is important is that none of the outlying cases appear to be influential,

save case 32. For cases 69, 70, 89, 91, and 94, the percentile values are well below 50% and the DFFITS values

5We report the results of the sensitivity analysis for our choice of “Best” model. The same procedure is carried out for model

1 and can be provided upon request.
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Table 8: Influential Cases

Case ID Leverage Cook’s Distance Percentile Value DFFITS

32 0.9985 59.2687 100% 21.7374

69 0.1854 0.0741 0.0283% 0.7770

70 0.1655 0.0028 0.00000007% -0.1497

89 0.2693 0.0402 0.0028% -0.5664

91 0.2162 0.0308 0.0010% 0.4962

94 0.7975 0.0073 0.000003% 0.2399

do not exceed one in absolute values. To investigate further, we employ the DFBETAS, which measures

the difference between the estimated coefficients β̂k(k = 0, 1, ..., 55) based on all 97 cases and those obtained

when case 32 is dropped from the sample. The sign of the DFBETAS value indicates whether the inclusion

of case 32 increases or decreases the estimated regression coefficient while its absolute magnitude provides

information about the size of the difference relative to the standard error of that estimated coefficient. The

guideline for identifying influential cases using the DFBETAS measure is to consider a case whose absolute

value of DFBETAS exceeds one influential.

Table 9: Influence On Regression Coefficeients

Case ID β̂0 β̂1 β̂2 β̂3 β̂4 β̂44 β̂5 β̂55

32 0.2056 0.1480 0.0222 -0.0232 18.0871 7.3958 0.1588 -0.0290

From Table 9, we note that β̂4 and β̂44 (weight and weight squared) are severely impacted. The signs

suggest that the inclusion of case 32 likely leads to over-estimations of the parameters on weight and weight

squared. Furthermore, we report that no other case in the sample has any DFBETAS value that exceeds one

in absolute value. In other words, we have strong evidence that case 32 may be an anomaly. We also present

graphical representations of DFBETAS values for all variables in model 2 in Figure 5 and 6. Note that the

threshold indicated by the red lines may be adjusted to allow for different tolerance levels.6 This influential

point will be brought along in our analysis as we lack any justification for its exclusion. We nevertheless

emphasize that there is now a caveat to interpreting the results of our analysis, particularly those pertaining

to prostate weight.

6The program for these plots is included in the R script accompanying this report. Stakeholders may freely adjust these

threshold for further analysis.
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Figure 5: DFBETAS Diagnostics
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Figure 6: DFBETAS Diagnostics (Continue)
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5 Interval Estimation

5.1 Model 1: Confidence Interval for Estimated Coefficients

For model 1, we report the Bonferroni 95% family confidence intervals for all statistically significant

parameters in the Table 7.

Table 10: Bonferroni 95% Family Confidence Intervals Model 1

B Multiple = 2.6329

Predictor Parameter Point Estimator Standard Error Margin of Error Lower Upper

hyperplasia β2 0.0553 0.0327 0.0861 -0.0308 0.1414

invasion β3 0.6090 0.2341 0.6163 -0.0074 1.2253

gleason β4 0.3015 0.1237 0.3257 -0.0242 0.6273

volume β5 4.8113 1.001 2.6366 2.1748 7.4479

volume squared β55 -1.7273 0.8140 2.1432 -3.8706 0.4160

weight squared β66 -1.8067 0.9246 2.4345 -4.2411 0.6278

These intervals use a 0.95 family confidence coefficient, which means that if repeated samples are selected

and interval estimates for these parameters are calculated for each sample, 95% of the independent samples

would lead to all correct interval estimates. The error rate is 0.05, which means that there is only a 5%

probability that one or all of the interval estimates would be incorrect. We note that many of these intervals

contain 0, which may not be useful for your purposes, but the family confidence coefficient may be adjusted

accordingly using the programs we provide in the R script. As such, family confidence intervals involving

subsets of predictors that are of interest to your research team can be constructed. Table 11 reports the

Bonferroni 95% family confidence intervals for all statistically significant parameters in the model 2. The

same interpretations apply for these intervals.

Table 11: Bonferroni 95% Family Confidence Intervals Model 2

B Multiple = 2.6329

Predictor Parameter Point Estimator Standard Error Margin of Error Lower Upper

invasion β2 0.5948 0.2344 0.6169 -0.0221 1.2117

gleason β3 0.2812 0.1229 0.3234 -0.0422 0.6046

volume β4 4.8790 1.0023 2.6382 2.2408 7.5172

volume squared β44 -1.7273 0.8140 2.1432 -3.8706 0.4160

weight squared β55 -1.4212 0.7750 2.0399 -3.4611 0.6187
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As can be seen, the only interval estimate that does not contain zero is that for the volume variable.

With family confidence coefficient 0.95, we estimate that the true parameter on volume is between 2.2408

and 7.5172. Similar to model 1, the confidence intervals reported may be too wide to be useful. To address

these concerns, we have two recommendations: 1) the confidence coefficient may be adjusted to allow for

tighter interval estimates, allowing the family error rate to be somewhat higher in exchange for more useful

inferences and 2) joint intervals can be constructed for smaller subsets of predictors to provide inferences on

a few selected parameters that are most important to your team’s research.

6 Conclusion

The evidence in this report is in favor of model 2. In section 3.3, we find that model 2 beats model 1

in 4 of the 7 selection criteria, and the strengths of model 1 lack extremities to outweigh the extra variable

and strengths of model 2. These results, coupled with the a partial F test for the inclusion of the additional

variable suggested by model 1, strengthen our argument for model 2 significantly. Sections 3.4 and 3.5

indicate that there are no issues with non-constancy of error variance, normality of error terms, or model

aptness with either model. We report these results to further argue for model 2’s advantages; with no

violation of model assumptions, a simpler model is more ideal. In section 4, our regression results show that

all but hyperplasia and weight are significant predictor variables in model 2, and the age variable added

by model 1 is insignificant. All of these findings culminate to suggest that model 2 is our choice of “best”

predictive model.

We address and satisfy a significant number of typically problematic issues in this paper, but there are

a few that remain. In section 4.2, we find that case 32 in the sample is influential; however, without the

expertise of the University Medical Center to determine the true nature of this observation, it is included

in our model and may result in slightly more inefficient parameter estimation and interval estimates. By

assessing the model assumptions in sections 3.4 and 3.5, we are able to illustrate that our models have no

intrinsic issues. There is always the possibility of omitted variable bias, but with our methods of model

construction and considerations of interaction and higher-order terms, such biases may only result from

variables beyond scope of the data set provided to us. Therefore, we argue that there are very few analytical

problems inherent in our methodology.

To conclude, we have sufficient evidence that model 2 is the “best” linear regression model obtainable

from the potential predictor variables in the data set, and we suggest it for use among your medical research

team members. We hope you consult KCKC Consulting for any future statistical needs.
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